Another proof that there are infinitely many primes

There are many proofs that there are infinitely many primes. An argument by Chaitin [1] shows, roughly speaking, that if there were only finitely many primes, then there would not be enough prime factorizations to represent large integers. In this note, we give a short explicit argument based on this idea. We show that if there were only k primes, then the integers from 1 to $k^{3 k}$ would have fewer than $k^{3 k}$ different prime factorizations.

Suppose there are only k primes

$$
p_{1}=2, \quad p_{2}=3, \quad p_{3}=5, \quad \ldots, \quad p_{k}
$$

Since $2,3,5,7$ and 11 are prime, we have $k>4$. We will use "lg" to denote the base 2 logarithm. Note that we have the crude bounds $k>\lg k$ and $k \lg k>1$.

Let $N=k^{3 k}$. Given any positive integer $n \leq N$, we can write

$$
n=2^{a_{1}} 3^{a_{2}} 5^{a_{3}} \cdots p_{k}^{a_{k}}
$$

and for each j, we have

$$
2^{a_{j}} \leq p_{j}^{a_{j}} \leq n \leq N,
$$

implying $a_{j} \leq \lg N$. So a_{j} is between 0 and $\lg N$, so there are at most $1+\lg N$ possibilities for each a_{j}. We then observe

$$
1+\lg N=1+3 k \lg k<4 k \lg k<k \cdot k \cdot k=k^{3},
$$

so there are strictly fewer than k^{3} possibilities for each a_{j}, and hence fewer than $\left(k^{3}\right)^{k}$ possibilities for the tuple $\left(a_{1}, \ldots, a_{k}\right)$. That is, there are fewer than $k^{3 k}$ possibilities for the prime factorization of n, so it is not possible to construct prime factorizations for all positive integers $n \leq k^{3 k}$.

References

[1] G.J. Chaitin, Toward a mathematical definition of life, in The Maximum Entropy Formalism, R.D. Levine and M. Tribus, eds., MIT Press, Cambridge, 1979, pp. 477--498.

