Another proof of the infinitude of primes

Suppose there are only finitely many primes. Observe that 17 is prime, and let n be the product of all primes except 17 .

Let S be the set of positive integers that are coprime to n, and let T be the set of positive integers that are 1 more than a multiple of n. Then $T \subseteq S$.

Now observe that we have

$$
S=\left\{1,17,17^{2}, 17^{3}, \ldots\right\},
$$

where the differences between consecutive elements are strictly increasing, and

$$
T=\{1, n+1,2 n+1,3 n+1, \ldots\},
$$

which contains infinitely many pairs whose difference is n. Hence T cannot be a subset of S. This contradiction shows that the number of primes cannot be finite.

