
Idris Mercer’s Research Statement

Broadly speaking, my interests are applying analytic and probabilistic methods to combinatorial problems.
I am a pure mathematician, but I enjoy problems that are amenable to computational exploration. My
interests tend to lie in the following MSC categories:

05A16 Asymptotic enumeration
05D40 Probabilistic methods
11A41 Primes
26C10 Polynomials: location of zeros
60C05 Combinatorial probability
94A55 Shift register sequences and sequences over finite alphabets

My publications so far can be grouped into three broad topics:

1. Sequences with good correlation properties
2. Polynomials with restricted coefficients
3. Distribution of prime numbers

Following are descriptions of these three topics, my contributions to them, and questions for future research.

1. SEQUENCES WITH GOOD CORRELATION PROPERTIES

A binary sequence is an n-tuple A = (a0, a1, . . . , an−1) where each aj is ±1. We define the (acyclic)
autocorrelations of A by

ck =

n−k−1∑
j=0

ajaj+k (0 ≤ k ≤ n− 1)

which we can regard as dot products that measure how closely the sequence A resembles shifted versions of
itself. Note that c0 = n, which we can call the ‘trivial’ autocorrelation.

For example, one of the 32 binary sequences of length 5 is (+1,+1,+1,−1,+1), which we can abbreviate as
+ + +−+. Its nontrivial acyclic autocorrelations can be visualized as follows.

+ + + − +
+ + + − +

c1 = +1 + 1− 1− 1 = 0

+ + + − +
+ + + − +

c2 = +1− 1 + 1 = +1

+ + + − +
+ + + − +

c3 = −1 + 1 = 0

+ + + − +
+ + + − +

c4 = +1
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A surprisingly subtle question is: Among the 2n binary sequences of length n, can we find one whose
autocorrelations are collectively close to zero? (In digital communication, this is like finding a signal that is
uncorrelated with shifted versions of itself, but it can also be studied as a purely combinatorial problem.)

A binary sequence is called a Barker sequence if it satisfies ck ∈ {−1, 0,+1} for all k 6= 0. For parity
reasons, this is the closest to zero that the autocorrelations of a binary sequence could possibly be. There
are Barker sequences of lengths 2, 3, 4, 5, 7, 11, and 13. For example, one can verify that the sequence

+ + + + +−−+ +−+−+

(abbreviating in the same way as before) satisfies c1 = c3 = · · · = c11 = 0 and c2 = c4 = · · · = c12 = +1.
However, it is known that there are no Barker sequences of length n for 13 < n ≤ 4 · 1033, and it has
been conjectured at least since 1960 that there are no Barker sequences of length greater than 13. See, for
example, Section 3.1 of [26].

If Barker sequences are rare, how close to zero can we make the autocorrelations of a length n binary
sequence? If A is a length n binary sequence, then two natural measures of that closeness are

P (A) = max
1≤k≤n−1

|ck| ,

E(A) =
∑

1≤k≤n−1

c2k,

which we call the peak sidelobe level (PSL) and energy of A respectively. We can then define two
functions of n:

Pmin(n) = min
A
P (A),

Emin(n) = min
A
E(A),

where the minimum is taken over all 2n binary sequences of length n.

The asymptotic growth rates of the functions Pmin and Emin are unknown. In the presumably unlikely event
that there exists an infinite family of Barker sequences, their PSL would be 1 and their energy would grow
like n/2. It has been conjectured that in fact, Pmin(n) grows like a multiple of

√
n, but this has not been

proved.

In a 2006 article [11], I used probabilistic methods to show that if ε > 0, then asymptotically almost all
length n binary sequences A satisfy

P (A) ≤ (
√

2 + ε)
√
n log n.

(Here, ‘log’ is natural log, and ‘asymptotically almost all’ means the proportion of length n binary sequences
with a property approaches 1 as n → ∞.) This improved upon a 1968 result of Moser and Moon [21], and
was itself improved upon by Alon et al. in 2010 [1] and by Schmidt in 2014 [25]. One result of Alon et al. is
that if ε > 0, then asymptotically almost all length n binary sequences A satisfy

P (A) ≤
√

2n(log n− (1.5− ε) log log n).

In a 2016 article [17], I showed that for all n > 1, there exists a length n binary sequence A satisfying

P (A) ≤
√

2n(log n− log log n+ 0.862),

which does not improve upon Alon et al. in an asymptotic sense, but which does hold for all sequence lengths.

Schmidt’s 2014 work mentioned above shows that if ε > 0, then asymptotically almost all length n binary
sequences satisfy

(
√

2− ε)
√
n log n ≤ P (A) ≤ (

√
2 + ε)

√
n log n,
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so informally, the PSL of ‘most’ binary sequences is close to
√

2n log n. There still could exist ‘rare’ binary
sequences whose PSL grows like

√
n log log n or

√
n or smaller. Numerical evidence suggests that a 2012

construction of Schmidt [24] gives a family of binary sequences whose PSL grows like
√
n log log n, but this

has not been proved.

As a generalization of binary sequences, one can study complex sequences or unimodular sequences,
which are n-tuples A = (a0, a1, . . . , an−1) where each aj is a complex number of modulus 1. If the aj are mth
roots of unity, then we call the sequence an m-phase sequence or polyphase sequence. The (acyclic)
autocorrelations of a complex sequence are defined by

ck =

n−k−1∑
j=0

ajaj+k (0 ≤ k ≤ n− 1)

where the bar denotes complex conjugation. Just as with binary sequences, the autocorrelations can be
regarded as dot products, and a complex sequence with autocorrelations near zero can be regarded as a
signal that is uncorrelated with shifted versions of itself. We can define the PSL and energy of a complex
sequence:

P (A) = max
1≤k≤n−1

|ck| ,

E(A) =
∑

1≤k≤n−1

|ck|2 .

A complex sequence satisfying |ck| ≤ 1 for all k 6= 0 is known as a generalized Barker sequence or
unimodular Barker sequence.

Generalized Barker sequences have been found for all lengths up to N , where the value of N has been
gradually increasing. It was conjectured at one time [8] that there are no generalized Barker sequences of
length significantly greater than 36, but it was subsequently shown [22] that they exist for all lengths up to
70.

Chu sequences are a previously studied family of polyphase sequences that have good autocorrelation
properties. Based on observation of sequence lengths into the thousands, it was conjectured [2] that the
energy of Chu sequences grows like O(n3/2), where n is the sequence length. In a 2013 article [16], I proved
this conjecture, which was the first time a family of complex sequences was shown to have energy bounded
above by a multiple of n3/2 for all lengths n. Note that if there are generalized Barker sequences of all
lengths, then more would be true, because their energy would grow at most linearly in n. However, this has
not been proved.

Questions for further research on sequences:

• Can one prove that there is a family of length n binary sequences (using Schmidt’s 2012 construction,
or otherwise) whose PSL grows more slowly than O(

√
n log n), such as O(

√
n log log n) or O(

√
n)?

• Empirically, the distribution of the energy of binary sequences of fixed length resembles the Gumbel
distribution. Can one prove that this is the correct asymptotic distribution?

• Can one prove the existence of generalized Barker sequences for more lengths than are currently known,
or for infinitely many lengths?

• If there is an infinite family of generalized Barker sequences, then their energy grows like O(n). Can
one prove the existence of an infinite family of unimodular sequences whose energy grows more slowly
than the best currently known bound of O(n3/2)?
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2. POLYNOMIALS WITH RESTRICTED COEFFICIENTS

A Littlewood polynomial has coefficients that are +1 or −1, and a Newman polynomial has coefficients
that are 0 or 1. More precisely, a polynomial of the form

α(z) = a0 + a1z + a2z
2 + · · ·+ an−1z

n−1 (aj = ±1 for all j)

is called a Littlewood polynomial of length n, and a polynomial of the form

β(z) = zb1 + zb2 + · · ·+ zbn (b1 < · · · < bn are nonnegative integers)

is called a Newman polynomial of length n. There are exactly 2n Littlewood polynomials of length n, and
infinitely many Newman polynomials of length n (since there is no upper bound on the bj). Note also that
there is an obvious bijection between Littlewood polynomials of length n and binary sequences of length n.

There is a rich literature regarding the behavior of Littlewood or Newman polynomials on the unit circle in
the complex plane. Note that if |z| = 1 and α(z) and β(z) are as above, then both α(z) and β(z) are sums
of n terms that each have modulus 1. So we have both 0 ≤ |α(z)| ≤ n and 0 ≤ |β(z)| ≤ n on the unit circle.

Denote the unit circle by S. It is easy to find Littlewood or Newman polynomials that have zeros on S. If

γ(z) = 1 + z − z2 + z3 + z4 − z5 + z6 + z7 − z8 + z9 + z10 − z11

then we could say γ(z) has ‘coefficient sequence’

+ +−+ +−+ +−+ +−

which, informally, is a ‘periodic’ sequence. Note that γ(z) can be written as

γ(z) = (1 + z − z2)(1 + z3 + z6 + z9) = (1 + z − z2)(1− z12)/(1− z3)

which will have zeros at the 12th roots of unity that are not cube roots of unity. Note also that 1+z3+z6+z9

is a Newman polynomial with zeros on S. Informally, these polynomials have zeros on S for ‘obvious’ reasons.

The literature on Littlewood and Newman polynomials is often concerned with the opposite tendency:
polynomials with relatively high minimum modulus on S, as opposed to polynomials whose modulus dips
down to 0 somewhere on S. So speaking very informally, we want polynomials whose coefficient sequences
are ‘far’ from periodic. Here we can see a relationship to the topic of autocorrelation.

If α(z) is any length n Littlewood polynomial and |z| = 1, then we have

|α(z)|2 = α(z) · α(z)

=
(
a0 + a1z + · · ·+ an−1z

n−1
)(
a0 + a1

1

z
+ · · ·+ an−1

1

zn−1

)
and the autocorrelations of the binary sequence (a0, . . . , an−1) arise naturally when we expand. In particular,

the average value of |α(z)|2 over S is c0 = n (which is also the sum of the squares of the coefficients of α)
and so the usual L2 norm of α(z) on S is

√
n.

Authors including Erdős and Littlewood have made conjectures that, loosely speaking, involve trying to find
length n Littlewood polynomials α(z) that are ‘flat’ on S, in the sense that |α(z)| stays ‘close’ to its L2

average of
√
n, as opposed to dipping down near 0 or rising up near n. See, for instance, Problem 26 in [7]

or Problem 19 in [10]. One currently unproved conjecture (part of a conjecture of Littlewood) is as follows.

Conjecture: There is a positive constant K (perhaps K = 1/2) such that for all n, there exists a length n
Littlewood polynomial α(z) such that

|α(z)| ≥ K
√
n for all z ∈ S.
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Computations in [23] reveal that for each n in the set

{11, 12, 13, . . . , 25} ∪ {27, 29, 31, . . . , 65},

there exists a length n Littlewood polynomial α(z) that satisfies |α(z)| ≥ 0.56
√
n for all z ∈ S.

Define λ(n) to be the highest minimum modulus on S among all 2n Littlewood polynomials of length n.
Then the conjecture on page 4 is that λ(n) ≥ K

√
n for some positive K. It was shown by Carroll et al. [6]

that λ(n) > n0.4308.

Relevant to these questions is the specific length 13 Littlewood polynomial

δ(z) = 1 + z + z2 + z3 + z4 − z5 − z6 + z7 + z8 − z9 + z10 − z11 + z12

whose coefficient sequence is the length 13 Barker sequence. As z ranges over S, it turns out that |δ(z)| never
dips below 83% of its L2 average of

√
13. So this polynomial has unusually high minimum modulus on S.

The total number of length n Littlewood polynomials is 2n, which grows quickly enough to make it difficult
to do brute-force exhaustive searches. We thus sometimes focus on special types of Littlewood polynomials
that have certain symmetries and hence, informally speaking, fewer ‘degrees of freedom’.

Let α(z) = a0 + · · ·+ an−1z
n−1 be any Littlewood polynomial. If we have aj = an−1−j for all j, we say α(z)

is palindromic. If n is odd, say n = 2m + 1, then if we have am+j = (−1)jam−j for all j, we say α(z) is
skew-symmetric. The polynomial δ(z) shown above is skew-symmetric, as are many of the polynomials
with high minimum modulus in [6] and [23].

In a 2006 article [12], I proved that a skew-symmetric Littlewood polynomial cannot have any zeros on the
unit circle, as well as providing a new proof of the known result that a palindromic Littlewood polynomial
must have a zero on the unit circle.

Switching our attention from Littlewood polynomials to Newman polynomials, define the function

M(b1, . . . , bn) = min
z∈S

∣∣zb1 + · · ·+ zbn
∣∣

and then define
µ(n) = supM(b1, . . . , bn)

where the supremum is taken over all sets of n nonnegative integers. In other words, µ(n) is the highest
minimum modulus on S of a length n Newman polynomial. Note that in these definitions, as well as assuming
b1 < · · · < bn, we can assume b1 = 0, because if z ∈ S, we have∣∣zb1 + zb2 + · · ·+ zbn

∣∣ =
∣∣zb1(1 + zb2−b1 + · · ·+ zbn−b1)

∣∣
=
∣∣1 + zb2−b1 + · · ·+ zbn−b1

∣∣ .
Notice that µ(n) is mathematically well-defined, but it is not obvious how to compute µ(n) for a given n in
a finite number of steps, since there is no upper bound on the bj . Playing with specific examples can lead
to some conjectures:

µ(3) appears to be M(0, 1, 3) ≈ 0.607346,

µ(4) appears to be M(0, 1, 2, 4) ≈ 0.752394,

µ(5) appears to be M(0, 1, 2, 6, 9) = 1.

Not much is known about the function µ(n). In the 1980s, Boyd conjectured [4] that µ(n) > 1 for all n ≥ 6,
and further conjectured that µ(n) approaches infinity with n, perhaps growing like nc where c is a positive
constant.
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In a 2012 article [15], I proved that µ(n) > 0 for each n > 2, and found examples showing that µ(n) > 1 for
6 ≤ n ≤ 20. There is a construction showing that µ(n) > n0.14 when n is a power of 9, but very little seems
to be known about lower bounds for µ(n) that hold for all n.

In 1983, Campbell et al. [5] proved that µ(3) = M(0, 1, 3), and in 1992, Goddard [9] proved that µ(4) =
M(0, 1, 2, 4). The conjecture that µ(5) = 1 has still not been proved. In a 2019 article [20], I show that
µ(5) ≤ 1 + π/6 and that for every positive ε, the task of showing µ(5) ≤ 1 + ε can be reduced to checking a
finite number of cases.

In addition to studying the function µ(n), we can ask about the proportion of length n Newman polynomials
that have zeros on the unit circle (or that have other properties). Although the set of all length n Newman
polynomials is infinite, we can define

Newmn(K) =
{

1 + zb2 + · · ·+ zbn | 0 < b2 < . . . < bn ≤ K
}

which is a set of size
(

K
n−1
)
. (We assume b1 = 0 for reasons discussed previously.) Then, if S is the set of all

length n Newman polynomials that have some property P , it is reasonable to define

lim
K→∞

|S ∩Newmn(K)|
|Newmn(K)|

to be the proportion of length n Newman polynomials that have property P .

In a 2012 article [14], I proved that using this definition, we have:

1/4 of length 3 Newman polynomials are reducible over the rationals,

1/4 of length 3 Newman polynomials have zeros on the unit circle,

3/7 of length 4 Newman polynomials are reducible over the rationals,

3/7 of length 4 Newman polynomials have zeros on the unit circle,

and I proved that certain plausible conjectures imply that the proportion of length 5 Newman polynomials
with zeros on the unit circle is precisely 909/9464.

In a 2008 article [3], my coauthors and I found explicit formulae for the average fourth power of the L4 norm
of a Newman polynomial on S (for natural meanings of ‘average’), and showed that this gave a new proof of
a known result about what are called Sidon sets in additive number theory.

Questions for further research on polynomials:

• Can one prove that λ(n) >
√
n/2 for more values of n than currently known, or for infinitely many n?

If not, can we improve upon the result of Carroll et al. that λ(n) > n0.4308?

• What proportion of Littlewood polynomials of length n have zeros on the unit circle?

• Can one prove that µ(n) > 1 for all n ≥ 6? Probabilistic methods may be useful here, since Newman
polynomials with minimum modulus greater than 1 do not appear to be rare.

• Can one prove that for infinitely many n, we have µ(n) > f(n) for some function f(n) that grows
faster than n0.14?

• Can one prove that µ(n) can be calculated for a given n in finitely many steps (even an impractically
large finite number)?

• Can one prove anything about the proportion of Newman polynomials of length 6 (or 7, or higher)
that have roots on the unit circle?
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3. DISTRIBUTION OF PRIME NUMBERS

I have had two articles published in the American Mathematical Monthly giving alternative proofs that there
are infinitely many prime numbers. One [13] was a variant of Furstenberg’s topological proof, rephrased
without the language of topology. The other [18] is a short explicit argument based on an idea of Chaitin.

More broadly, I am interested in new elementary proofs of classic results from number theory, such as those
regarding the distribution of primes. For instance, in a 2018 article [19], I provide a combinatorial argument
(using values of Jacobsthal’s function) that every arithmetic progression with common difference at most
76 contains at least one prime, and I also show that certain plausible bounds on the growth of Jacobsthal’s
function would lead to an elementary proof of Dirichlet’s theorem.
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