
Proof of a subtle combinatorial identity
Idris Mercer

The identity (
2n

2m

)
=

m∑
k=0

(
2m + 1

2k + 1

)(
n + k

2m

)
(1)

appears in Problem 14 of Chapter 1 of Riordan’s classic work [1], as well as in a 2016 Stack Exchange
post [2]. At first glance, one might guess that this identity would be easy to prove, but it turns out
to be surprisingly subtle.

Answers in the Stack Exchange post contain proofs using inclusion-exclusion, generating functions,
and complex analysis. The instructions for Riordan’s Problem 14 involve using results from earlier
problems.

In this note, we prove the identity by a method that may take several steps, but is largely self-contained
and is combinatorial in spirit.

Lemma

Suppose a, b, and c are positive integers. Suppose Z is a set of bitstrings of length a + b. Suppose
that for every x ∈ Z, at most 2c of the last b bits of x are 1. Then Z is the disjoint union S1∪S2∪S3,
where

S1 = {x ∈ Z : exactly 2c of the last b bits are 1},
S2 = {x ∈ Z : the (a+1)th bit is 0, and exactly 2c−1 of the last b−1 bits are 1},
S3 = {x ∈ Z : at most 2c−2 of the last b−1 bits are 1}.

Proof. First note that Z can be written as the disjoint union T1 ∪ T2 ∪ T3, where

T1 = {x ∈ Z : exactly 2c of the last b bits are 1},
T2 = {x ∈ Z : exactly 2c−1 of the last b bits are 1},
T3 = {x ∈ Z : at most 2c−2 of the last b bits are 1}.

Then note that T2 can be written as the disjoint union T ′2 ∪ T ′′2 , where

T ′2 = {x ∈ Z : the (a+1)th bit is 0, and exactly 2c−1 of the last b−1 bits are 1},
T ′′2 = {x ∈ Z : the (a+1)th bit is 1, and exactly 2c−2 of the last b−1 bits are 1}.

Finally, observe that we have S1 = T1, S2 = T ′2, and S3 = T ′′2 ∪ T3.

We will apply this lemma repeatedly to the following situation. Let n and m be positive integers with
n ≥ m, and let Y be the set of all bitstrings of length 2n of which exactly 2m bits are 1, so |Y | =

(
2n
2m

)
.

We first apply the lemma with
a = n, b = n, c = m, Z = Y.

(Note that for all x ∈ Y , it is true that at most 2c = 2m of the last b bits of x are 1.) We conclude
that Y is the disjoint union S1 ∪ S2 ∪ S3, where

S1 = {x ∈ Y : exactly 2m of the last n bits are 1},
S2 = {x ∈ Y : the (n+1)th bit is 0, and exactly 2m−1 of the last n−1 bits are 1},
S3 = {x ∈ Y : at most 2m−2 of the last n−1 bits are 1}.

1



We then apply the lemma with

a = n + 1, b = n− 1, c = m− 1, Z = S3

to conclude that S3 is the disjoint union S∗1 ∪ S∗2 ∪ S∗3 , where

S∗1 = {x ∈ S3 : exactly 2m− 2 of the last n−1 bits are 1},
S∗2 = {x ∈ S3 : the (n+2)th bit is 0, and exactly 2m−3 of the last n−2 bits are 1},
S∗3 = {x ∈ S3 : at most 2m−4 of the last n−2 bits are 1}.

We continue this process. We next apply the lemma with

a = n + 2, b = n− 2, c = m− 2, Z = S∗3

to conclude that S∗3 is the disjoint union S∗∗1 ∪ S∗∗2 ∪ S∗∗3 , where

S∗∗1 = {x ∈ S∗3 : exactly 2m− 4 of the last n−2 bits are 1},
S∗∗2 = {x ∈ S∗3 : the (n+3)th bit is 0, and exactly 2m−5 of the last n−3 bits are 1},
S∗∗3 = {x ∈ S∗3 : at most 2m−6 of the last n−3 bits are 1},

and so on. This means that Y is the disjoint union

S1 ∪ S2 ∪ S∗1 ∪ S∗2 ∪ S∗∗1 ∪ S∗∗2 ∪ · · ·

where the process terminates with a set in which at most 2m− 2m = 0 of the last n−m bits are 0.
We may also note that the statements appearing in the definitions of the sets

S1, S2, S
∗
1 , S

∗
2 , S

∗∗
1 , S∗∗2 , . . .

are pairwise incompatible for any element of Y . Hence the conditions x ∈ S3, x ∈ S∗3 , . . . in the
definitions of those sets can be replaced with the condition x ∈ Y . Thus, if we define

V2m = S1, V2m−1 = S2, V2m−2 = S∗1 , V2m−3 = S∗2 , V2m−4 = S∗∗1 , V2m−5 = S∗∗2 , . . . ,

then the above argument proves the following.

Corollary

Let n and m are positive integers with n ≥ m, and let Y be the set of all bitstrings of length 2n of
which exactly 2m bits are 1. Then Y is the disjoint union V2m ∪ V2m−1 ∪ · · · ∪ V0, where

V2m = {x ∈ Y : exactly 2m of the last n bits are 1},
V2m−1 = {x ∈ Y : the (n+1)th bit is 0, and exactly 2m−1 of the last n−1 bits are 1},
V2m−2 = {x ∈ Y : exactly 2m−2 of the last n−1 bits are 1},
V2m−3 = {x ∈ Y : the (n+2)th bit is 0, and exactly 2m−3 of the last n−2 bits are 1},
V2m−4 = {x ∈ Y : exactly 2m−4 of the last n−2 bits are 1},

...

V2m−2j+1 = {x ∈ Y : the (n+j)th bit is 0, and exactly 2m−2j+1 of the last n−j bits are 1},
V2m−2j = {x ∈ Y : exactly 2m−2j of the last n−j bits are 1},

...

V3 = {x ∈ Y : the (n+m−1)th bit is 0, and exactly 3 of the last n−m + 1 bits are 1},
V2 = {x ∈ Y : exactly 2 of the last n−m + 1 bits are 1},
V1 = {x ∈ Y : the (n+m)th bit is 0, and exactly 1 of the last n−m bits are 1},
V0 = {x ∈ Y : exactly 0 of the last n−m bits are 1}.
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Example

Consider the case where n = 11 and m = 3. Then the set Y is the disjoint union V6 ∪ V5 ∪ · · · ∪ V0,
where

V6 = {x ∈ Y : the last 11 bits are ----------- where exactly 6 of the - are 1},
V5 = {x ∈ Y : the last 11 bits are 0---------- where exactly 5 of the - are 1},
V4 = {x ∈ Y : the last 11 bits are *---------- where exactly 4 of the - are 1},
V3 = {x ∈ Y : the last 11 bits are *0--------- where exactly 3 of the - are 1},
V2 = {x ∈ Y : the last 11 bits are **--------- where exactly 2 of the - are 1},
V1 = {x ∈ Y : the last 11 bits are **0-------- where exactly 1 of the - is 1},
V0 = {x ∈ Y : the last 11 bits are ***-------- where exactly 0 of the - are 1}.

Here, * represents a bit that can be either 1 or 0. This partitions Y based on the ‘endings’ of x ∈ Y ,
where ‘ending’ means the last 11 bits. The total number of possible endings is

∑6
j=0

(
11
j

)
= 1486,

because the number of 1s in the last 11 bits can be anything from 0 to 6. We can count the number
of different endings corresponding to each Vj as follows:

V6 corresponds to 20
(
11
6

)
= 462 endings

V5 corresponds to 20
(
10
5

)
= 252 endings

V4 corresponds to 21
(
10
4

)
= 420 endings

V3 corresponds to 21
(
9
3

)
= 168 endings

V2 corresponds to 22
(
9
2

)
= 144 endings

V1 corresponds to 22
(
8
1

)
= 32 endings

V0 corresponds to 23
(
8
0

)
= 8 endings

The numbers of endings add to 1486, as they should.

We now consider not just the endings of the bitstrings, but the total number of bitstrings in Y and
in the Vj for a general n and m. Notice that the condition defining V2m−2j+1 is equivalent to

• exactly 2j − 1 of the first n + j − 1 bits are 1,

• the (n + j)th bit is 0, and

• exactly 2m− 2j + 1 of the last n− j bits are 1,

and the condition defining V2m−2j is equivalent to

• exactly 2j of the first n + j bits are 1, and

• exactly 2m− 2j of the last n− j bits are 1.

It follows that we have

|V2m−2j+1| =
(
n + j − 1

2j − 1

)(
n− j

2m− 2j + 1

)
,

|V2m−2j | =
(
n + j

2j

)(
n− j

2m− 2j

)
.
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Since Y is the disjoint union

Y =

m⋃
j=1

V2m−2j+1 ∪
m⋃
j=0

V2m−2j ,

it follows that we have the identity(
2n

2m

)
=

m∑
j=1

(
n + j − 1

2j − 1

)(
n− j

2m− 2j + 1

)
+

m∑
j=0

(
n + j

2j

)(
n− j

2m− 2j

)
. (2)

Now the identity (2) is not the identity (1) from the beginning of this note, but we will show how (1)
can be proved using (2). The bulk of the work is already done, and the remainder of our argument
uses some well-known facts such as(

a + 1

b + 1

)
=

(
a

b

)
+

(
a

b + 1

)
,(

a

b

)(
b

c

)
=

(
a

c

)(
a− c

b− c

)
, and(

a

b

)
= 0 if b < 0 or b > a.

We begin with the right-hand side of (1) and proceed as follows.

m∑
k=0

(
2m + 1

2k + 1

)(
n + k

2m

)
=

m∑
k=0

[(
2m

2k

)
+

(
2m

2k + 1

)](
n + k

2m

)

=

m∑
k=0

(
n + k

2m

)(
2m

2k

)
+

m∑
k=0

(
n + k

2m

)(
2m

2k + 1

)

=

m∑
k=0

(
n + k

2k

)(
n− k

2m− 2k

)
+

m∑
k=0

(
n + k

2k + 1

)(
n− k − 1

2m− 2k − 1

)
.

If we let j = k in the first sum and j = k + 1 in the second sum, this becomes

m∑
j=0

(
n + j

2j

)(
n− j

2m− 2j

)
+

m+1∑
j=1

(
n + j − 1

2j − 1

)(
n− j

2m− 2j + 1

)
and the term with j = m+ 1 in the second sum can be ignored, because it satisfies 2m− 2j + 1 = −1.
We thus have something identical to the right-hand side of (2), which completes the proof of (1).
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